Roll No.	

Total No. of Questions: 9] [Total No. of Printed Pages: 7

(2042)

UG (CBCS) Ist Year Annual Examination

2005

B.Sc. CHEMISTRY

(Atomic Structure, Bonding, General Organic Chemistry and Aliphatic Hydrocarbons)

(Core)

Paper: CHEM 101

Time: 3 Hours

[Maximum Marks: 50

Note: - Attempt five questions in all, selecting one question from each Section. Section-E is compulsory.

Section-A

- 1. (a) What do you understand by Hund's Rule? Explain with example.
 - (b) What do you mean by radial and angular wave functions?
 - (c) Can we have 4g orbitals? Explain.

(d) Give significance of ψ and ψ^2 .

3,3,2,2

CH-724

Turn Over

- 2. (a) Describe the physical significance of different quantum numbers.
 - (b) Why is 4s orbital lower in energy than 3d orbital?
 - (c) 2s orbital of H-atom has one node. Explain.
 - (d) What are eigen functions and eigen values? 4,2,2,2

Section-B

- 3. (a) Discuss Fajan's rules.
 - (b) What is Born-Haber cycle?
 - (c) Why anhydrous AlCl₃ is covalent and but AlCl₃.6H₂O is ionic?
 - (d) Calculate the dipole moment of HCl molecule if its bond length is 1.27 Å and dipole moment is 1.03D. (Electronic charge = 4.8×10^{-10} e.s.u.).
- 4. (a) Give main postulates of VSEPR theory.
 - (b) Compare the stability of NO, NO⁺ and NO⁻ on the basis of molecular orbital theory.

CH-724

- (c) Bond angle in H₂S is lesser than H₂O. Explain why?
- (d) All the P-F bonds in PF₅ are not equivalent.

 Explain.

 3,3,2,2

Section-C

- 5. (a) What are free radicals? Discuss two methods of their generation.
 - (b) Phenols are more acidic than alcohols. Explain.
 - (c) What is meant by Aromaticity? State Huckel's rule.
 - (d) Account for unusual stability of

 (i) cycloheptatrienyl cation and

 (ii) triphenylmethyl cation. 3,2,3,2
- (a) Explain the essential condition for a compound to show geometrical isomerism.
 - (b) Explain the following terms:
 - (i) Optical activity
 - (ii) Diastereomer
 - (iii) Enantiomer
 - (iv) Stereogenic centre

CH-724

- (c) Explain which is relatively more stable and why?
 - (i) The Gauche or Anti conformation in case of *n*-butane.
 - (ii) The Boat or Chair conformation in case of cyclohexane. 2,4,4

Section-D

- (a) Discuss the mechanism of chlorination of methane in detail. Give the evidences in favour of mechanism.
 - (b) Why are alkanes less reactive towards majority of the organic reagents?
 - (c) Bromine is less reactive but more selective where as chlorine is more reactive and less selective. Explain with one example of in each case.
 - (d) Discuss Sabatier-Senderen's reaction. 4,2,2,2
- (a) Discuss the mechanism of dehydrohalogenation of alkyl halides to alkenes. Explain its regiochemistry.

CH-724

- (b) Discuss stereochemistry of addition of halogens to alkenes.
- (c) Explain with terminal alkynes are acidic in nature.
- (d) What happens when (give chemical equation):
 - Ethyne reacts with ammonical silver nitrate solution.
 - (ii) Ethyne reacts with ammonical cuprous chloride solution.
 - (iii) 2-Butyne is treated with hot alkaline potassium permaganate. 3,2,2,3

Section-E

- 9. Multiple Choice Questions/True or False/Fill in the blanks:
 - (i) Maximum number of electron in a subshell is given by:
 - (a) l^2

- (b) 4l + 2
- (c) 2(l+1)
- (d) 2(n+1)

CH-724

(5)

Turn Over

(ii)	Which compound has greatest lattice energy?	
	(a) LiBr (b) LiCl	
	(c) LiI (d) LiF	
(iii)	ii) Which of the molecule has the weakest bond	
	(a) H ₂ (b) Li ₂	
	(c) F ₂ (d) O ₂	
(iv)	Optical isomerism is shown by:	
	(a) 1-Butanol (b) 2-Butanol	
	(c) But-1-ene (d) But-2-ene	
(v)	What orbital hybridization may be used to	
	describe the carbon atoms 1, 2, 3, 4 in the	
	compound ?	
	1 2 3 4	
	$CH_2 = CH - CH_2 - CH_3$:	
	(a) sp^2 , sp^3 , sp^3 , sp^3	
	(b) sp^2 , sp^2 , sp^3 , sp^3	
	(c) sp^2 , sp^2 , sp^2 , sp^3	
	(d) sp^2 , sp , sp^2 , sp^3	
CH-	-724 (6)	

+

- (vi) Both 1-butanol and 2-butanol give the same mixture of alkenes on dehydration. (True/False)
- (vii) There are orbitals corresponding to each value of 1.
- (viii) SF₄ molecule involves hybridization of Sulphur atom.
- (ix) The three classes of alcohols differ widely in case of dehydration, the order of reactivity being
- (x) $HC = CH + Na \rightarrow + 1 \times 10 = 10$